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The present study investigated the effects of the SSRI fluoxetine and the serotonin synthesis blocker —

parachlorophenylalanine (PCPA) on morphine self-administration and startle reactivity in rats subjected to
social isolation during adulthood. Adult Wistar rats were housed individually or in pairs for 21 days. They
were treated with fluoxetine, PCPA, or vehicle and tested for their startle response and intake of a morphine
solution (0.5 mg/ml). Socially restricted rats consumed significantly more morphine solution (but not water)
than rats living in pairs, in both one-bottle and in two-bottle tests. They also showed significantly higher
startle response amplitude. Daily fluoxetine treatment (5 mg/kg i.p.) counteracted these behavioral
alterations induced by isolation housing while PCPA treatment (200 mg/kg for 3 consecutive days) further
exacerbated it. Social isolation may increase morphine self-administration and emotional reactivity in the
startle box by affecting serotonin. Antidepressants (such as fluoxetine) may normalize or stabilize serotonin
function and restore the behavioral changes produced by isolation.
+972 46423618.
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1. Introduction

Clinical studies in humans indicate that social stressors such as
social isolation, lack of supporting social network, or antisocial
personality disorder are risk factors for hypertension, coronary heart
disease, poorer outcomes and increased mortality after life-threaten-
ing events, as well as for emotional disorders including stress, anxiety,
depression and suicide attempts (Boden-Albala et al., 2005; Cacioppo
andHawkley, 2003; Duberstein et al., 2004; Hawthorne, 2008; Kessler,
1997;MookadamandArthur, 2004; Oetzel et al., 2007; Stockdale et al.,
2007; Tennant, 1999). Moreover, social isolation is viewed as a major
etiological factor in the development of compulsive drug abuse, more
chronic and severe addiction, and higher rates of dropouts and relapse
after withdrawal attempts (Compton et al., 2003, 2005; Darke et al.,
2005;Dobkin et al., 2002;Oetzel et al., 2007; Pelissier andO'Neil, 2000;
Stockdale et al., 2007; Westermeyer and Thuras, 2005). Such
environmental and situational factors associated with drug use can
interact with the behavioral, subjective, and rewarding effects of a
given drug, thus influencing the propensity to use the same drug
again (Caprioli et al., 2007). It follows that comprehensive laboratory
models of drug seeking behavior should include these components.

Preventing rats from normal interaction and communication
affects physiological and behavioral processes (Brain and Benton,
1979; Hall, 1998; Valzelli and Garattini, 1972). Many studies have
focused on the long-term consequences of isolation at infancy or just
before weaning (isolation rearing). In some studies rats were isolated
during both weaning and adulthood (isolated housing) confounding
whether the resultant behavioral changes could be attributed to
isolated rearing, isolated housing or an interaction between these
states. A relatively small number of studies have examined social
isolation during adulthood (for review see Hall, 1998; Lu et al., 2003).

Individual housing increases aggression and interferes with the
performance of a cooperation task inmale rats (Byrd and Briner, 1999;
Miachon et al., 2000; Rilke et al., 2001; Sanchez and Meier, 1997;
Schuster et al., 1993; Swanson and Schuster, 1987; Vale and
Montgomery, 1997; Valzelli, 1971;Willner et al., 1989;Wongwitdecha
andMarsden, 1996). Rats housed individually tend to bemore irritable,
restless and hyperactive compared with rats housed in groups (Bakshi
and Geyer, 1999; Domeney and Feldon, 1998; Wilkinson et al., 1994).
They also show patterns of hypersensitivity, novelty-seeking, anxiety,
stress and depressive-like behavior (Brenes et al., 2008; Brenes Saenz
et al., 2008; Grippo et al., 2007;Hall et al., 1997;NunesMamedeRosa et
al., 2005; Robbins, 1992; Serra et al., 2000; Sudakov et al., 2003; Weiss
et al., 2004; Westenbroek et al., 2005; Whitaker-Azmitia et al., 2000;
Willner, 1984). Isolation also affects physiological parameters such as:
hyperfunction of the HPA axis, elevated levels of plasma corticoste-
rone, heavier adrenal glands, increased heart rate, and hypertension
(Gadek-Michalska et al., 1994; Grippo et al., 2007; Nagaraja and
Jeganathan, 1999; Serra et al., 2000; Stranahan et al., 2006;Weiss et al.,
2004; Westenbroek et al., 2005; Wright and Ingenito, 2003).
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Social isolation has also been shown to affect psychoactive drug
self-administration, though the results of these studies are not
consistent, perhaps due to variations in experimental design, drug
delivery system, type of drug, dosage, etc (Caprioli et al., 2007).
However, several studies have reported that exposure of rats to
environmental and social stressors, correlate with enhanced tendency
to consume psychostimulants, opiates and alcohol (for review see Lu
et al., 2003; Stairs and Bardo, 2009(. Morphine has been shown to be
effective in reversing isolation effects on various behavioral and
physiological parameters (Bardo et al., 1997; Hol et al., 1996; Jimenez
and Fuentes, 1993; Sudakov et al., 2003; Van den Berg et al., 1999; Van
den Berg et al., 2000). Several studies have shown that rats housed in
isolation tend to consume higher amounts of morphine and other
opiates compared with grouped housed rats (Alexander et al., 1978;
Alexander et al., 1981; Heyne, 1996; Shaham et al., 1992). We have
reported that adult rats housed in isolation self administer signifi-
cantly higher amounts of morphine solution (but not water)
compared with rats housed in pairs (Raz and Berger, 2010).

Social isolation is associated with alterations in multiple brain
structures and functions, particularly with changes in serotonin
function (Hall, 1998; Hall et al., 1998; Fone and Porkess, 2008;
Robbins et al., 1996; Serra et al., 2007; Whitaker-Azmitia et al., 2000).
In general, isolation-rearing and isolation-housing of rats has been
found to decrease serotonin concentration, disrupt serotonin synthe-
sis and release and alter serotonin turnover in prefrontal cortex,
hippocampus and nucleus accumbens (Brenes et al., 2008; Brenes and
Fornaguera, 2009; Dalley et al., 2002; Fone and Porkess, 2008; Hall,
1998; Hall et al., 1998; Heibreder et al., 2000; Jones et al., 1992;
Muchimapura et al., 2002; Muchimapura et al., 2003; Parker and
Morinan, 1986; Preece et al., 2004; Robbins et al., 1996; Segal et al.,
1973; Whitaker-Azmitia et al., 2000). Further support, though
indirect, for serotonergic changes subsequent to isolation-housing
involve the ability of some antidepressant drugs especially those
acting to enhance or to balance serotonin activity (i.e. fluoxetine,
fluvoxamine, sertraline, femoxetine, anpirtoline, fluprazine and
imipramine) to reverse isolation-induced aggression, sucrose con-
sumption, immobility behavior, impaired coping, cognitive deficits,
anxiety and cooperation deficits (Berger and Schuster, 1987; Brenes
and Fornaguera, 2009; Greco et al., 1990; Heritch et al., 1990;
Maisonnette et al., 1993; Olivier et al., 1989; Ramanathan et al., 2003;
Rilke et al., 2001; Ruedi-Bettschen et al., 2004; Sanchez and Hyttel,
1994; Sanchez and Meier, 1997; Willner, 1984).

Fluoxetine was the first selective serotonin re-uptake inhibitor to
be widely available for treatment of depression and other neuropsy-
chiatric disorders. It has been also suggested as a treatment for drug
abuse and dependence though with mixed results.

In rats, fluoxetine has been found to change or reverse some of the
neuronal and behavioral effects of morphine including: oral stereo-
typy (Wennemer and Kornetsky, 1999); morphine sensitization (Sills
and Fletcher, 1997); and neuronal hyperactivity (Akaoka and Aston-
Jones, 1993). However, while there is some evidence for the
attenuating effect of fluoxetine on alcohol and cocaine self adminis-
tration in rats (Glatz et al., 2002; Homberg et al., 2004; Le et al., 1999),
there is, to our knowledge, no evidence for the effect of fluoxetine on
opiates and especially on morphine self administration in socially
isolated rats.

The aim of the present study is to further investigate the rela-
tionship between social isolation at adulthood, morphine self
administration, startle response and drug manipulations that affect
serotonin. Therefore, we examine the effect of the SSRI fluoxetine
(Exp. 1) and of the serotonin synthesis blocker, parachlorophenyla-
lanine (PCPA) (Exp. 2) on startle reactivity and morphine self-
administration of isolation-housed vs. paired-housed rats. We
hypothesize that fluoxetine would reduce startle response amplitude
and intake of morphine solution self-administration and that PCPA
would further enhance these behaviors in socially restricted rats.
2. Materials and methods

2.1. Subjects

Subjects were adult male Wistar rats (Harlan). Their age at the
beginning of the experiments was 56 days and their average weight
was 210 g. Throughout the study, subjects were kept in room
controlled for temperature (23±1 °C) and maintained on a 12-hour
light/dark cycle (lights on — 0700 h) in standard cages with
transparent walls and sawdust bedding. Water and other solutions
were given through external bottles hanging on the cage. Daily fluid
consumption was measured by weighing bottles before presentation
and again after 24 h. All procedures were conducted in accordance
with the NIH Guidelines for the Care and Use of Laboratory Animals
and approved by the institutional ethics Committee. Morphine sulfate
was obtained from Rafa Laboratories, Jerusalem. Fluoxetine hydro-
chloride and parachlorophenylalanine (PCPA) were obtained from
Sigma-Aldrich.

2.2. Experimental procedures

Upon arrival, animals were housed 6 per cage and allowed to adapt
to the animal facility for 1 week.

2.2.1. Stage I — adaptation (Days 1–21)
Rats were assigned randomly to the different experimental

groups. In both experiments, subjects were first divided in two
groups of differing housing conditions: Isolated housing: 1 animal
per 40×25×18 cm cage (n=20) and Social housing: 2 animals per
56×34×19 cm cage (n=20). Each group then subdivided again in
two to create 4 (n=10) groups.

In Experiment 1, half the animals (10 isolated and 10 paired) were
treated with fluoxetine hydrochloride (5 mg/kg dissolved in distilled
water in a volume of 2.5 ml/kg, IP) and half (10 isolated and 10
paired) were treated with vehicle (distilled water at 2.5 ml/kg).
Fluoxetine or vehicle treatment was given daily, starting after 7 days
of adaptation to housing conditions and lasting throughout the
experiment (Days 8–34).

In Experiment 2, half (10 isolated and 10 paired)were treatedwith
PCPA (200 mg/kg dissolved in saline 0.9% in a volume of 4 ml/kg, IP)
and half (10 isolated and 10 paired) with saline (at 4 ml/kg). PCPA or
saline treatment was given acutely in three consecutive days on Days
16–18 of the adaptation phase. On Days 19–21, rats were given the
chance to recover before the starting of behavioral tests. This acute
PCPA treatment has been found to result in up to 90% depletion of
brain serotonin (Koe and Weissman, 1966; Richter-Levin and Segal,
1989).

Animals in both experiments were maintained under these
different housing conditions for 21 days with access to food and
water ad libitum.Water intake was measured during the last 3 days of
this phase (Days 19–21). Behavioral tests began on Day 22.

2.2.2. Stage II — startle response (Day 22)
Startle response was measured using an automated, ventilated,

sound-attenuated JR. startle box (Hamilton-Kinder, USA) that was
positioned in a dimly lighted room. The startle box consisted of a
Plexiglas chamber mounted on a piezoelectric accelerometer. Move-
ments of the rats inside the chamber resulted in changes of the
voltage output of the accelerometer. These signals were amplified,
digitized, and fed into a data-acquisition board in a computer for
further analysis. Rats were habituated for 30 min to the startle test
room before being placed in the chamber. The startle session started
with a 5-min acclimatization period, with a background noise level of
57 dB which was maintained throughout the session. Rats were
subjected to 10 tones (40 ms, 110 dB noise stimulus) with intervals of
1 min. The maximum startle response for each trial was measured by
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arbitrary units (AU). The average of the 10 responses of each animal
was taken as an index of the intensity of its startle reflex response.

2.2.3. Stage III — forced morphine consumption (one-bottle test) (Days
23–28)

Subjects were given access to Morphine sulfate solution only
(0.5 mg/ml) for 6 days. Morphine solution intake wasmeasured every
24 h by weighing the bottles. Rats in the social housing were provided
with one bottle. So as to obtain an estimate of the morphine
consumption for a single animal, the total intake was divided in half.

2.2.4. Stage IV — choice test (two-bottle test) (Days 29–34)
Subjects were given access to both water and morphine solution

(0.5 mg/ml) for 6 days. Again, intake amounts were estimated by
weighing bottles every 24 h and total intake of paired housed rats was
divided in two.

2.3. Statistical analysis

For the startle response test, data were analyzed using One-Way
ANOVA followed by post-hoc Tukey tests (HSD). For the morphine
consumption tests, data were analyzed by ANOVA for repeated
measures (mixed design). Housing condition (isolated vs. paired rats)
and treatment (fluoxetine or PCPA vs. vehicle) was assessed as
between-group factors and day was assessed as within-subject factor.
Tukey (HSD)was used as the post hoc test when appropriate. For pairs
of rats, the best estimate of the intake for a single animal was taken as
the mean intake of the pair. To reduce statistical bias, we considered
each pair as a single animal for analysis. Numeric results are presented
as Mean±SEM (in both text and figures) and considered significant
for p-values less than 0.05.

We assumed that 1 g equals 1 ml, and therefore we present
morphine solution and water consumption in ml units.

3. Results

3.1. Experiment 1

Effects of fluoxetine on startle response amplitude and morphine
self-administration of isolated vs. paired housed rats.

3.1.1. Weight
Throughout the experiment no significant differences in body

weight were seen as a function of housing conditions or fluoxetine
treatment (Table 1). Data are presented as total volume of morphine
solution or water consumed. “Mean” represents the average mor-
phine solution or water consumption of all days of measurements.

3.1.2. Startle response
Fluoxetine treatment resulted in significant reduction of mean

startle amplitude of isolated rats. There were significant differences
between groups [F(3,36)=4.83, pb0.006]. Post hoc analysis revealed
that the mean startle response of isolated rats treated with vehicle
was higher (1374.7±352.98) relative to paired rats treated with
vehicle (950.4±325.06) (HSD, pb0.04). However, Isolated rats
treated with fluoxetine exhibited lower levels of startle reactivity
Table 1
Body weight development during the duration of Experiment 1.

Time point in study

Day of housing (Day 1)
First day of fluoxetine/vehicle treatment (Day 8)
Day of startle response test, after 14 days of fluoxetine/vehicle treatment (Day 22)
First day of morphine/water choice test (Day 29)
End of study (Day 34)

Values are given in grams as mean±SEM.
(871.05±349.93) compared with isolated rats treated with vehicle
(1374.7±352.98) (HSD, pb0.01). No differences were found between
isolated rats treated with fluoxetine and paired rats treated with
either fluoxetine or vehicle (Fig. 1a).

3.1.3. Morphine self-administration

3.1.3.1. Forced test (one-bottle test). Significant differences in mor-
phine solution intake were seen between groups [F(3,26)=5.63,
pb0.004]. The days⁎group interaction was not significant. Isolated
rats treated with vehicle consumed higher amounts of morphine
solution (16.54±1.21) compared with paired rats treated with
vehicle (10.53±1.5) (HSD, pb0.02) or fluoxetine (9.68±1.03)
(HSD, pb0.01). Isolated rats treated with fluoxetine consumed
significantly lower amounts of morphine solution (11.77±1.31)
relative to isolates treated with vehicle (16.59±1.21) (HSD, pb0.03).
No differences were found between isolates treated with fluoxetine
and paired animals treated with either fluoxetine or vehicle (Fig. 1b).

3.1.3.2. Choice test (two-bottle test). Significant differences in
morphine solution intake were seen between groups [F(3,26)=
67.1, pb0.0001]. A significant days⁎group interaction was also found
[F(15)=4.2, pb0.0001]. Isolated rats treated with vehicle self-
administered higher amounts of morphine solution (11.35±0.21)
than paired housed rats treated with vehicle (7.78±0.29) (HSD,
pb0.0001) or fluoxetine (7.78±0.29) (HSD, pb0.0001). Isolates
treated with fluoxetine consumed lower amounts of morphine
solution (8.38±0.16) than isolates treated with vehicle (11.35±
0.21) (HSD, pb0.0001). There were no differences in morphine intake
between isolates treated with fluoxetine and pairs treated with either
fluoxetine or vehicle. No differences in water intake were seen
between all 4 groups (Fig. 1c).

3.2. Experiment 2

Effects of PCPA on startle response amplitude and morphine self-
administration of isolated vs. paired housed rats.

3.2.1. Weight
Throughout the experiment, no significant differences in body

weight were seen as a function of housing conditions. PCPA treatment
resulted in decreased body weight of isolates as well as paired rats
compared with control rats [F(3,36)=20.14, pb0.0001]. However,
those differences “disappeared” on the third day of the forced
morphine test (Day 24) and from then on remained similar in all
groups (Table 2).

3.2.2. Startle response
PCPA treatment resulted in significant enhancement of mean

startle amplitude of isolated and paired housed rats. There were
significant differences between groups [F(3,36)=14.87, pb0.0001].
Post hoc analysis revealed that the mean startle response of isolated
rats treated with saline was higher (1098±241.59) relative to paired
rats treated with saline (814.32±204.54) (HSD, pb0.02). However,
Isolated rats treated with PCPA exhibited higher levels of startle
reactivity (1421.164.41) compared with isolated rats treated with
Isolation-vehicle Isolation-fluoxetine Pairs-vehicle Pairs-fluoxetine

208.4±4.37 209.2±3.8 211.7±4.52 214±5.19
254±4 252.3±4.21 259.7±4.59 261.4±4.25

307.8±6.73 301.7±6.73 320±3.44 302.2±5.65
294.1±13.1 280.3±9.75 301.9±9.12 286.1±7.82
317.9±7.6 310.9±8.16 329.8±5.03 306.2±6.32



Fig. 1. Mean startle response amplitude (in arbitrary units) (a); Morphine solution
intake (ml) during 6 days of one-bottle test (b); Morphine solution and water intake
(ml) during 6 days of two-bottle test (c), among isolated vs. paired rats treated with
fluoxetine or vehicle. Error bars represent SEM.
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saline (1098±241.59) (HSD, pb0.009). Paired rats treated with PCPA
exhibited higher levels of startle reactivity (1277.62±238.43)
compared with pairs treated with saline (814.32±204.54) (HSD,
pb0.0001). No differences were found between isolated rats treated
with PCPA and paired rats treated with PCPA (Fig. 2a).
3.2.3. Morphine self-administration

3.2.3.1. Forced test (one-bottle test). Significant differences in mor-
phine solution intake were seen between groups [F(3,26)=14.98,
pb0.0001]. The days⁎group interaction was not significant. Isolated
rats treated with saline consumed higher amounts of morphine solu-
tion (12.38±0.76) compared with pairs treated with saline (6.82±
0.89) (HSD, pb0.05). Isolated rats treated with PCPA consumed signif-
icantly higher amounts of morphine solution (18.19±1.55) relative to
isolates treated with saline (12.38±0.76) (HSD, pb0.01) and to pairs
treated with saline (6.82±0.89) (HSD, pb0.0001). Pairs treated with
PCPA consumed higher amounts of morphine solution (20.94±2.34)
comparedwith pairs treatedwith saline (6.82±0.89) (HSD, pb0.0001)
and compared with isolates treated with saline (12.38±0.76) (HSD,
pb0.002). No differences were found between isolates treated with
PCPA and paired animals treated with PCPA (Fig. 2b).

3.2.3.2. Choice test (two-bottle test). Again there were significant
differences in morphine solution intake between groups [F(3,26)=
10.1, pb0.0001]. A days⁎group interaction was found [F(15)=2.83,
pb0.001]. Isolated rats treated with saline self-administered higher
amounts of morphine solution (10.18±0.4) than paired housed rats
treated with saline (6.84±0.32) (this finding reached marginal
statistic significance; HSD, pb0.06). Isolates treated with PCPA
consumed higher amounts of morphine solution (13.29±0.83) than
isolates treatedwith saline (10.18±0.4) (HSD, pb0.03) and than pairs
treated with saline (6.84±0.32) (HSD, pb0.0001). Pairs treated with
PCPA consumed more morphine solution (13.07±1.78) compared
with pairs treated with saline (6.84±0.32) (HSD, pb0.001). There
were no differences in morphine intake between isolates treated with
PCPA and pairs treated with PCPA. There were no differences in water
intake between all 4 groups (Fig. 2c).

4. Discussion

Themajor aim of the present study was to investigate the effects of
the SSRI fluoxetine and the serotonin synthesis blocker, PCPA, on
morphine self-administration and on the startle response of rats
subjected to social isolation during adulthood.

In keeping with earlier studies (Raz and Berger, 2010), social
isolation in adult rats increased morphine intake relative to socially
housed control groups. In addition, isolated housing augmented a
non-conditioned startle response.

The SSRI, fluoxetine, counteracted these behavioral alterations
induced by isolation housing while the 5HT synthesis inhibitor, PCPA,
further exacerbated them. Rats in isolation treated with fluoxetine
self-administered lower amounts of morphine and had lower startle
response compared with isolates treated with vehicle and had similar
morphine intake as paired rats. Isolates treated with PCPA self-
administered higher amounts of morphine and had higher startle
response compared with isolates treated with saline. Paired rats
treated with PCPA consumed much more of the drug and had much
higher startle response than paired rats treated with saline.

In laboratory rats, isolation-rearing and isolation-housing have
been reported to decrease serotonin concentration, alter turnover,
and disrupt presynaptic serotonin activity (release and synthesis) in
several brain areas (Bickerdike et al., 1993; Brenes et al., 2008; Brenes
and Fornaguera, 2009; Dalley et al., 2002; Fone and Porkess, 2008;
Hall, 1998; Hall et al., 1998; Heibreder et al., 2000; Jones et al., 1992;
Lapiz et al., 2003; Miura et al., 2005; Muchimapura et al., 2002;
Muchimapura et al., 2003; Parker and Morinan, 1986; Preece et al.,
2004; Robbins et al., 1996; Segal et al., 1973; Whitaker-Azmitia et al.,
2000). These effects of social isolation on serotonin function vary as a
function of age, period of isolation, duration of isolation, and the brain
region studied.



Fig. 2. Mean startle response amplitude (in arbitrary units) (a); Morphine solution
intake (ml) during 6 days of one-bottle test (b); Morphine solution and water intake
(ml) during 6 days of two-bottle test (c), among isolated vs. paired rats treated with
PCPA or saline. Error bars represent SEM.

Table 2
Body weight development during the duration of experiment 2.

Time point in study Isolation-saline Isolation-PCPA Pairs-saline Pairs-PCPA

Day of housing (Day 1) 227.3±1.95 228.2±2.14 229±1.93 224.4±2.35
First day of PCPA/saline treatment (Day 16) 283.1±3.95 284.8±4.19 287.2±3.07 284.3±3.69
Day of startle response test, after 3 recovery days from PCPA (Day 22) 304.8±4.86 275.8±5.44 310.7±3.12 274.5±2.94
First day of morphine/water choice test (Day 29) 248.1±12.13 253.5±9.44 256.3±11.52 239.9±11.54
End of study (Day 34) 269±12.75 277.7±8.24 283.8±12.39 265.7±10.88

Values are given in grams as mean±SEM.
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The majority of such studies use “isolation rearing” in which rats
are housed individually from a relatively young age (mostly starting
on post natal days 21–28). There are fewer studies in which isolated
housing is initiated during adulthood (for review see Hall, 1998). In
addition, there are a small number of studies comparing individually
housed versus socially housed adult rats on opiate self-administration
and especially morphine self-administration of (Alexander et al.,
1978; Alexander et al., 1981). Finally, to our knowledge, there are no
reports examining the effects of SSRI's and of PCPA on morphine self-
administration or startle reactivity of isolated adult rats.

Startle response is a common behavioral test for assessment of
emotional reactivity in rodents, and is often used to assess the effects
of anti-anxiety drugs (Bourin et al., 2007; Grillon, 2002; Grillon, 2008;
Rodgers, 1997). In trying to understand the putative mechanisms
underlying the effects of fluoxetine and PCPA on startle response in
the present study, it is important to differentiate between conditioned
and unconditioned startle responses. Many studies have focused on
fear-conditioning or fear-potentiated startle paradigm. In this model,
the animals are trained to associate a neutral stimulus with an
aversive stimulus and hence, after a few pairings, the CS induces a
state of fear as measured by a potentiation of the startle response. The
suggested neuronal basis of the fear-potentiated startle involves
primarily the amygdaloid complex and its connections with some
other rostral brain structures (reviewed by Davis et al., 1993 and by
Koch, 1999). However, a growing number of studies suggest that fear-
potentiated startle reflects a rapid conditioned response to the fear
provoking stimulus, and does not provide an ideal model for more
general and durable states of stress, anxiety, discomfort and
apprehension (Davis et al., 1997; Gewirtz et al., 1998; Grillon and
Baas, 2003; Koch, 1999). In the present study, no conditioning was
used so the startle reflex was basically an unconditioned response. In
this case, the startle response is thought to be mediated by a relatively
simple neuronal circuit located in the lower brain stem including,
among others, the caudal pontine reticular nucleus and the dorsal
periaqueductal gray (Brandao et al., 2008; Koch, 1999). It has been
also suggested that another structure may play an important role in
the startle-enhancing effects of more durable states of stress and
anxiety — the bed nucleus of the stria terminalis (BNST) (Davis et al.,
1997; Gewirtz et al., 1998; Grillon and Baas, 2003; Koch, 1999). In
view of this, it is possible that those lower brain stem structures or the
BNST, rather than the amygdala, were the main neural substrates for
the action of fluoxetine in counteracting (and of PCPA exacerbating)
the effects of isolation-potentiated startle seen in the present study.

A commonly held view is that in the rat and in other species
isolated housing and restricted social interaction produce physiolog-
ical and behavioral changes that may be catalogued under the general
category of “stress”. Indeed, social isolation in laboratory animals has
been suggested as a model for stress, anxiety and depression in
humans (Brenes et al., 2008; Brenes et al., 2009; Cryan and Holmes,
2005; Cryan and Slattery, 2007; Fone and Porkess, 2008; Fuchs and
Fliugge, 2006; Harris, 1989; Heidbreder et al., 2000; Katz, 1981;
McKinney, 1984; Pryce et al., 2005; Thorsell et al., 2006; Willner,
1984). Consumption of morphine in isolated rats may be seen as “self-
medication”, hypothetically bringing relief from the unpleasant state
of stress. Since socially housed rats are not exposed to the stressful
consequences of social isolation, they do not benefit in the same
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manner from morphine consumption which might even interfere
with the performance of normal social interaction and therefore is
consumed at lower doses (Alexander et al., 1978, 1981; McIntosh
et al., 1980; Panksepp et al., 1979).

Opioid systems are involved in the regulation of social behaviors
in juvenile and adult rats and several lines of evidence suggest an
involvement of opioid systems in changes associated with social
isolation. Social interaction has been found to induce release of
opioid peptides in several brain areas, suggesting that isolation
might reduce release of endogenous opioid peptides (Benton and
Brain, 1988; Hol et al., 1996; Panksepp et al., 1980; Petkov et al.,
1985; Schenk et al., 1987; Van den Berg et al., 1999). These authors
postulate that exogenous opioid treatment during the isolation
period might substitute for social interaction-induced endogenous
opioid peptide release. Indeed, it has been observed that morphine
treatment in rats subjected to isolation increases adult social activity
and enhances opioid peptide release as compared with saline treated
rats. Both social activity and opioid peptide release were unaffected
by morphine treatment in non-isolated rats (Van den Berg et al.,
1999).

There are other possible explanations for the effects of social
isolation on morphine intake (Raz and Berger, 2010). The fact that
there were no differences in water intake between the groups
suggests that this finding cannot be explained by a general
enhancement of fluid intake by isolates, but rather due to selective
enhancement in morphine intake. Moreover, since there were no
significant differences in body weight between isolated vs. paired
subjects during the course of experiments (see also Thorsell et al.,
2005; Thorsell et al., 2006) these results cannot be explained by
differences in body weight, that might affect daily intake and/or drug
reactivity.

Social isolationmay change the sensitivity and reactivity to various
stimuli. Therefore isolated rats may be more or less reactive to the
bitter taste of morphine or to the novelty of the taste as opposed to the
psychoactive action of the drug. Indeed, in our laboratory we have
preliminary data that isolation housing may increase the intake of a
bitter solution of quinine. Supporting our assumption of a pharma-
cological action of the drug as the most appropriate explanation of the
pattern of results in our studies, we have found in preliminary
experiments that the opiate antagonist naltrexone reversed the
increase in morphine consumption following isolated housing (Raz
and Berger, 2005). Isolated rats treated daily with naltrexone (5 mg/
kg), consume significantly lower amounts of morphine solution than
isolated rats treated with saline and similar amounts as their socially
housed counterparts. Since naltrexone is not known to affect taste
reactivity (Arbisi et al., 1999; Goodwin et al., 2001; Scinska et al.,
2000) it is perhaps more likely that it reduces drug intake of isolates
because it attenuates the psychopharmacological action of morphine.

Changes in serotonin pathways following social restriction have
been linked to the development of aggressive behavior, depression,
anxiety and substance abuse in both humans and animals (Heinz
et al., 2001; Tamashiro et al., 2005; Matsumoto et al., 2005; Wrase et
al., 2006). Moreover, the therapeutic effects of SSRI drugs and some
anti-anxiety treatments are often attributed to modulation of
dysfunctional serotonergic systems (Berger and Schuster, 1987;
Brenes and Fornaguera, 2009; Greco et al., 1990; Heritch et al.,
1990; Maisonnette et al., 1993; Olivier et al., 1989; Ramanathan et al.,
2003; Rilke et al., 2001; Ruedi-Bettschen et al., 2004; Sanchez and
Hyttel, 1994; Sanchez and Meier, 1997; Willner, 1984).

Taken together, it therefore is reasonable to speculate that social
isolation alters serotonergic function and underlies the behavioral
changes such as higher tendency to self-administer morphine and
higher emotional reactivity in the startle box. Antidepressants (such
as fluoxetine) act to normalize or stabilize serotonin tone and
function, and therefore restore the behavioral changes observed in
isolated rats.
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